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We obtain the transfer matrix functional relations for the chiral Potts model 
with skewed boundary conditions and find that they are the same as for periodic 
boundary conditions, but with modified selection rules. As a start toward 
calculating the interfacial tension in general, we here evaluate it in a low-tem- 
perature limit, performing a Bethe-ansatz-type calculation. Finally, we specialize 
the relations to the superintegrable case, verifying the ansatz proposed by 
Albertini et aL 
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1. I N T R O D U C T I O N  

The "chiral  Por ts  mode l"  is a p l ana r  lat t ice mode l  with N-s ta te  spins tha t  
live on the sites of  the lat t ice and  in teract  a long edges. The  in terac t ions  are 
chosen so tha t  the s t a r - t r i ang le  re la t ions  (t) are  satisfied, and  because  of 
t he se  we expect  the mode l  to be "solvable ,"  in the sense tha t  we should  
be able to calculate  the bulk  free energy and some other  large- la t t ice  
proper t ies ,  such as the cor re la t ion  length and  interfacial  tension. 

The  special  " super in tegrab le"  case has been extensively studied,  
pa r t i cu la r ly  when N =  3, (2-14) M u c h  less is known  for the general  solvable  
model ,  but  for N =  3 Alber t in i  et  al. have pos tu la t ed  funct ional  re la t ions  
satisfied by the row- to - row transfer  matrices./4/ These and  o ther  re la t ions  
have been der ived for general  N by  Bazhanov  and  S t roganov  (15~ and by 
Baxter  et  aL (16) All these re la t ions  assume per iod ic  (nonskewed)  b o u n d a r y  
condi t ions :  if each row of  the lat t ice conta ins  L sites, ca r ry ing  spins 
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al  ..... aL ,  (ordered from left to right), then the spin to the right of eL is 
O'L+I, where O ' L + I  ~ O" 1 , 

These relations also define the eigenvalues of the transfer matrices. The 
bulk free energy can be obtained from the maximum eigenvalue and has 
been derived as a double integral. ~17'18) 

However, as yet no calculations appear to have been made of the 
correlation length and interfacial tension for the general solvable model 
(these are obtainable from the next-to-largest eigenvalues, or from the 
largest eigenvalue with skewed boundary conditions). Here we make a start 
in this direction by deriving the functional relations for the skewed 
boundary conditions f f L + l = a l - - r ,  where r is some fixed integer (the 
"skew par~/meter") which we can choose to be between 0 and N -  1. 

We find an intriguing property, namely that the only change in the 
functional relations is to replace the quantum number Q of the spin-shift 
operator by Q + r ,  module N (see Section 3). Thus we obtain the same 
solution set as before (when r = 0), but the selection rules are different. This 
must account for at least some of the "spurious solutions" that have 
previously been reported. (~9) 

Having obtained the functional relations, in Section 4 we go on to put 
them into an explicitly real form. Then, in order to locate the desired solu- 
tions corresponding to the largest eigenvalues, in Section 5 we consider a 
zero-temperature limit. Because of the skewed boundary conditions, this 
turns out to be nontrivial, involving a Bethe ansatz (or functional relation) 
calculation for r dislocations or "particles" moving through the lattice. 

This calculation supports a Z-invariance argument that the vertical 
interracial tension (as here defined) should be independent of the vertical 
rapidities p', p'. In Section 6 we therefore consider the particular choice of 
these rapidities that makes the model "superintegrable" and show how the 
functional relations simplify for this case (still with skewed boundary 
conditions). We verify the "ansatz" used for periodic boundary conditions 
by Albertini et al. ~5) 

It should be noted that the zero-temperature limit considered here is 
different from that mentioned after Eq. (3.52) of ref. 20 and in ref. 21, where 
the relationship of the integrable chiral Potts model to the wetting line of 
the Ostlund-Huse model is discussed. This is because the interracial tension 
of this model is orientation dependent, and the orientation considered in 
refs. 20 and 21 is different from that used here. Our choice is made to 
(a) ensure independence of one set of rapidities, and (b) make the zero- 
temperature problem solvable by a simple Bethe ansatz. We hope to go on 
in a subsequent publication to study nonzero temperatures: then it should 
be possible to consider the effect of 90 ~ rotations of the lattice. 
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2. B O L T Z M A N N  WEIGHTS A N D  THE TRANSFER M A T R I X  

We define the chiral Potts model in the usual w a y .  (1'17) Consider the 
square lattice ~q', drawn diagonally as in Fig. 1, with L sites per row. At 
each site i there is a spin ~ri, which takes values 0,..., N - 1 .  There is an 
associated lattice s denoted by dotted lines, such that each edge of 
passes through a vertex of Y". 

Let ~9 = gZni/N be the primitive Nth root of unity and let k and k' be 
two real positive parameters satisfying 

k 2 + k  ' 2 =  1 (2.1) 

Also, let q =  {Xq, yq, #q} be a set of complex parameters ("q-variables"), 
related by 

U U k x  N =  - k l . t q  , - k ' l ~  u (2.2) X qN "~- y qN = k(  l ~- x q y q ), 1 ' u kyU = l 

and further define 

t q=Xqyq ,  A q = l . t  x (2.3) 

Only one of these variables is independent. In terms of the Ctq, bq, Cq, and 
dq of ref. 1, Xq = aq/dq, yq = bq/cq, and ~tq = dq/cq. We refer to q as a 
"rapidity." 

Similarly, define "p-variables" p = {xp, yp, #p}, and tp. To each verti- 
cal (horizontal) dotted line of Fig. 1 assign a rapidity p (q). In general they 
may be different for different lines. In fact a convenient level of generality 
that we shall use here is to allow the vertical rapidities to be alternately 
p, p', p, p', .... as indicated. Then on a SW --+ NE edge (i, j )  of ~ (with j 
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Fig. 1. The square lattice L,r of M rows with L sites per row. Tq is the transfer matrix of an 
odd row, Tq of an even row. Three vertical and two horizontal dotted rapidity lines are 

shown. 
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above i), the spins o-i, oj interact with Boltzmann weight Wpq(a i -  o-j) [-or 
W p , q ( a i - u j ) ] ,  where (for all integers n) 

Wpq(n) = (#p/~q)n ~I (Yq - ('~ - ~ (2.4) 
j=l 

Similarly, on S E - ~ N W  edges the spins interact with Boltzmann 
weight ffVpq(o- i -  o-j), where 

Wpq(t'l) = (#p#q)n f i  ((DXp -- gOJXq)/(yq -- (DJyp) (2.5) 
j = l  

Here we normalize so that Wpq(O)= IWpq(0)= 1. The weights satisfy the 
periodicity conditions Wpq(n + N )  = Wpq(n), l~pq(n + N )  = lWpq(n). They 
also satisfy the star-triangle relation(l'2~ 

N - - I  

Z Wqr(b -- d) mpr(a - d) l~pq(d-  c) 
d=O 

= (f.qfq./f.r) Wpq(a - b) l~p,(b - c) Wqr(a - c) (2.6) 

for all rapidities p, q, r and all integers (spins) a, b, c. Here fpq is a 
spin-independent function, defined by 

f PNq=det'[IgTpq(i--J)]/~fii= Wpq(n) 

It can be written in product form by using the identity (2.44) of ref. 16, 
namely 

N -  1 (tp -- COJtq): 
de tN[IYV-pq( i_ j ) ]=NU/2e i , (N  1)(U 2)/12 =l~I 1 

:=__ ( x .  - oJJxq)J (y,, - a ~ J y j  

(2.7) 

We define row-to-row transfer matrices T and 2P as in ref. 16. Let 
o-=o-1 ..... o-L be the spins in the lower row of Fig. 1. Similarly, let 
o-' = o-1,...,' u/.' be the spins in the next row, and o- . . . . . .  = o-1,..., O-L those in the 
row above that. Let T be the N L by  N L matrix with elements 

L 
Tcya' = H mpq(o-. -- •j) ~/~rp,q(o-.+ 1 - -  o ' j )  ( 2 . 8 )  

J = l  

Similarly, let ~P be the N L matrix with elements 

L 
Ta'r H Wpq(o-j--aj)  mp,q(o-tj--utj+l) ( 2 . 9 )  

J = l  



Chiral Potts Model wi th  Skewed Boundary Conditions 465 

In ref. 16 we used the periodic boundary conditions ~ L + I =  ~1, ~ + 1 =  ~'.  
Here we generalize these to the ,skewed" boundary conditions 

tt tt •L+l=al--r, ~L+I =~1 --r, m o d N  (2.10) 

where r is any integer (without loss of generality we can restrict it to the 
range 0 ~ < r < N - 1 ) .  We know that in the Ising case such conditions 
provide a natural completion of the eigenvalue spectrum. Also, if we can 
obtain the maximum eigenvalue of TIF for arbitrary r, then we can deduce 
the interfacial tensor. (23'24) 

The matrices T and iF are the row-to-row transfer matrices of the 
model (see, for comparison, Chapter 7 of ref. 25). If the lattice 2~ ~ has 2M 
rows (and hence 2LM sites), then the partition function is 

Z = Trace TIFTT... iF = Trace(T~P) M (2.11) 

there being one transfer matrix T or iF for each row. 
We can regard the vertical rapidities p and p' as fixed constants, the 

horizontal rapidity q as a variable, and denote T, iF explicitly as Tq, Tq. 
Then for periodic boundary conditions, it is shown in (2.32) of ref. 16 that 
the transfer matrices satisfy the commutation property, 

ro iFr = ( f  . f , r / f ,  qL'r) L rr L (2.12) 

together with a corresponding property obtained by interchanging T with 
iF, and p with p'. These properties are direct results of the star-triangle 
(or "Yang-Baxter") relation, and hold for all horizontal rapidities q 
and r. Their derivation extends at once [-because it remains true that 
Wqr(O'L+ 1 --O'L+I)= Wqr(~71 --al')] to the skewed boundary conditions 
(2.10). 

It follows that the matrices T u and iFq can be simultaneously 
diagonalized by the coupled similarity transformations Tq ~ P-1TqQ and 
iFq~ Q-l~-qp, where P and Q are constant matrices, independent of q. 
Throughout this paper, by "eigenvalues" and "eigenvectors" of Tu, iFq we 
mean the solutions of the coupled vector equations 

Tqy = (scalar)x, iFqx = (scalar)y (2.13) 

x and y are the eigenvectors (independent of q), the scalars are the 
eigenvalues of Tq, iFq, zj(t). Postmultiplying any matrix relation by 
the appropriate x or y [-e.g., (2.12) by x]  effectively replaces each matrix 
by its eigenvalue. For this reason we shall often use the same notation 
for the eigenvalues as for the matrices themselves. For instance, (2.12) 
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can be regarded as a relation either between matrices or between their 
corresponding eigenvalues. 

In ref. 16 we also introduced a related set of N L by N L matrices -(J) ~k,q 
for k = 0,..., N -  1 and j = 0 ..... N. Here we shall regard these as defined by 
the functional relations of the next section, but for completeness we also 
given the direct definition of ,(2) For  all integers a, b, c, d, let e = a -  d +  k ~k,q" 
(mod N) and/~ = b - c + k (mod N). Define a function Fpq(~, n) by 

Fpq(O, O)= yp, Fpq(O, 1) = -O)tq 

Fpq(1,  O ) =  #p ,  Fqq(1, 1) = --ogxp#p (2.14) 

Fpq(Oqn)=O if a # O  or 1 

and hence define 

Then 

1 

U(a, d] b, c) = ~ conIa-6-k)(--COtq) ~ - n  Fpq(~, n) Fp,q(~, n) 
n = 0  

(2.15) 

L 

{~2~ = 1--I u(Gs, aj laj+~,aj+l)  (2.16) ~k, qJaa" 
J = l  

Nopte that an element of ~.(2) is zero unless a s - a ~ ;  + k  = 0 or 1 (mod N) ~k,q 
for all J =  1,..., L. Also, each element of ,(2) is a polynomial in tq of degree ~ k,q 
at most L. To simplify the equations, we have multiplied the'matrices ,(J) ~k,q 
of ref. 16 by (ypyp,)(j-l)r and the function z(t) by (ypyp,)2z. 

It is shown in ref. 16 that the matrices rj(t) commute with Tq Tr (for 
all t, q, r), so they can also be diagonalized by the similarity transformation 
rj(t) ~ P-~rj(t)P and have the vector x of (2.13) as an eigenvector. 

As is remarked in ref. 16 [after eq. (3.44)], we can think ,~ ~.(2) ~* ~k,q as the 
transfer matrix of a mixed model in which there are chiral Potts spins on 
alternate rows of 2 ' ,  with new "n-spins" in between that take only the 
values 0 and 1. The r-matrices are related to the column-to-column transfer 
matrices of the "superintegrable" chiral Potts model (2 14): if we impose 
fixed-spin boundary conditions, then they each have a very simple direct- 
product eigenvalue spectrum (see Section 6 of ref. 16, and refs. 6, 26, 
and 27). Note, however, that we do not do this here: we use the skewed 
boundary conditions (2.10). 

Spin-Shift Symmetry. The model is Z~ invariant, i.e., it is 
unchanged by incrementing every spin a~ by one (mod N). Let X be the 
spin-shift operator, with elements 

L 

X~, = l--[ 6(as, a s +  1) (2.17) 
J = l  
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taking 6(a, b ) =  1 if a=b (mod N), else 6(a, b)=0. Then J ~ N ~ _  1 and J( 
commutes with all the T and r transfer matrices, in particular 

J~Tq-~- TqX,  XTq = TqX (2.18) 

For the eigenvalue equations we can therefore replace X by its eigenvalue, 
setting 

X=co  Q (2.19) 

where Q = 0,..., N -  1. 
Further, let V be the automorphism (called T in refs 1 and 16) such 

that 

XGv-~OOXp, yvp=CO-lyp, [AVp=CO-I]Ap (2.20) 

Then 

Wp, vq (n) Wpq(rl Jf 1) l~pq(n + 1) 
Wpq(1)' l~p'Vq(n)= Hfpq(1) (2.21) 

It follows that 

T v q =  [Wpo(1) W,o(1)]-LX-'G 
(2.22) 

/%= [Wp,qO) W,q(1)]-Lx-ltq 

For all complex numbers x, y and all integers m, n, we introduce the 
notation 

(x,y)m,n= I]  (X--ycoJ), n>>.m 
j--m+ 1 (2.23) 

= H ( x - y c o 0  1, n~<m 
j--n+[ 

Using this, we define, for all integers k, l, j such that j = k + l, 

(k,l)__ F(Yp' Xq)o,l-l(Yq' XP)--k,o(Yq'_ypL)O,N--k 1] L 
Aq -- L -k l X (2.24) 

N#p #p,( p,,Xq)_,,,_, J 
[coJG(tp,  tq)_  N N L H q- 1,j 

(2.25) 
- ( j )  _ Hp,,q- []~p,J(tp,, tq)j_ I,N l/(XNp~ --Xq)]N L 

These are the 2(q k't), H ~  ), /~(pJ,q) used in Section 3 of ref. 16, except that we 
jL d(Y I)L/2 (d i) (N y 1)L (y) have multiplied each by ( - # q )  co " ' yp-  yp, - -  , and Hp~ by a 

further (ypyp,)(l +j N))C, and /t~q)by (ypyp,),-~)L. 
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The set of variables q =  {Xq, yq, #q} defines the Boltzmann weights 
and the transfer matrices (considered as functions of q) uniquely. Let 
~(k, l), or simply gtkl, be the related set {ogkyq, cOtXq, #q~}. Define 

S . . . .  r k A ( k , l  ) y k , ~  
q [ k l  - -  t o  z ~  q .~x a g l k  I (2.26) 

Substituting the forms (2.4), (2.5) into (2.8), we find that ~q enters the RHS 
--~ N that only via the factor #qL+~-~ = #+ . (Apart possibly from factors of #q 

can arise from interpreting the spin differences to modulo N.) Hence #;Tq 
is a single-valued rational function of xq and yq. Similarly, so is #;  Tq. 
Using this fact, replacing q in (2.22) by @l, we obtain 

Sqlk + 1.t-- a = Sql~+ (2.27) 

Hence S q l k l  depends on k and l only via their sum j = k +/ ,  and we can 
write it simply as SCq f). 

3. F U N C T I O N A L  RELATIONS 

3.1. The Tt ,  T (i) Relations 

We now present the generalization to skewed boundary conditions 
of the transfer matrix functional relations given in ref. 16. Let us denote 
equations of that paper with the prefix BBP. 

The derivation of (BBP3.46) goes through axs before, except for the 
remark two lines before Eq. (BBP3.41). The factors involving co -ka and ~o kc 
now give a contribution co k(~+l ~ to the prodand in (BBP2.27), and 
hence contribute an extra factor cok<:)i+l-:i')= co -k~ to the overall product, 
i.e., to the first term on the RHS of (BBP3.46). Corresponding extra factors 
arise in the second term, given a contribution co t<~; ~+1) to the prodand, 
and hence an overall factor co t~. Using our definition (2.26), we see that 
(BBP3.46) therefore generalizes to 

( 2 ) - r k ~  k T q S q ( J )  - . - r k ~ T ( J )  .~(J)  A -  + , ~ l r L T ( J ) . r ( N  J) (3.1) 
- -  cu  l ~ p , q  k , q  ~ w L * p q ~ k _ j ,  q k  l 

true for any rapidity q and all integers k, l, j satisfying k + l =  j, where 
0 ~ j ~< N. As before, 

z<o>_ n < 1 ) _  X k ( 3 . 2 )  k , q  - -  v ,  T k ,  q - -  

r<;) depends on q simply as a polynomial in tq of degree ( j -  1)L, and for k , q  

j =  0,..., N 

Xz</> - +<g) v -  z(J) (3 .3 )  
k , q  - -  + k , q  "ex - 1 ,q  
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We can use these properties of z {j) to simplify our notation, writing k,q 

z<Y) -- X - k ' c j ( t q )  (3.4) k,q -- 

where Zo(t)= O, Zl(t)= 1. 
Multiplying (3.1) by cor~Xk, we find that it simplifies to 

T q S ( q J ) _ - ( j )  jr j (j) j 
- -  Hp,q'~j(tq) q- (.o X H p q T N _ j ( ( D  tq) (3.5) 

which makes it clear that there is only one equation for each value of j. 
We could have obtained this result another way: there is a simple trick 

[mentioned before Eq. (3.46) of ref. 20] whereby one can generalize the 
functional relations of ref. 16 to skewed boundary conditions. First note 
that the equations generalize at once to the fuly column-inhomogeneous 
case, when the 2L vertical rapidities can differ arbitrarily from column 
to column. This point is discussed before (BBP4.48). In the functional 
relations, the scalar coefficients are products of expressions of the form 
f ( p ) L  and g(p'), where f ( p )  and g(p') are some functions. To generalize, 
all one has to do is to replace such expressions by the products 
f ( P l ) f ( P 3 ) ' " f ( P 2 r - 1 )  and g(P2)g(P4) '"g(PzL) ,  P2L-1 and P2L being 
the rapidities of the p- and p'-type lines (respectively) between sites L and 
L + 1 in the lowest row of Fig. 1. 

Suppose we do this, and then take Pl, P2 . . . . .  Pzc to be 
p, p', p ..... p', p, Vp', where V is the automorphism defined in (2.20). Thus 
we only change the last vertical rapidity, taking it from p' to Vp'. From 
(2.4) and (2.5), 

Wp,q(n+ 1) l # / p , q ( n  - 1) (3.6) 
Wvp,,q(n)- ~v,q{T )- , I#/vp"q(n)= lg/p,q(U - 1) 

We make these substitutions in (2.8) and (2.9), using the periodic 
boundary conditions of ref. 16. Only the very last terms in the products are 
affected, giving 

T=[I#/p,u(N- I)] 'T* 
f =  [ W~,q(1)]-'f* 

(3.7) 

where T* and ;?* are the transfer matrices of this paper, with the skewed 
boundary conditions {~L+I = { r l -  1, {~+l = a ' / - 1 ,  i.e., with r =  1 in (2.10). 
Further, the function F defined in (BBP3.38) satisfies 

Fvp, q(j, ~, n) = cO"Fp, q(j, ~, n) (3.8) 
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and from (BBP3.44a) it follows that the r-matrices of ref. 16 (with r = 0) 
become those of this paper, with r = 1. 

Making these substitutions in (BBP3.46), we do indeed obtain our 
result (3.5) for the case of skewed boundary conditions with r =  1. 
Iterating, we obtain it for arbitrary values of r. 

3.2. The  O t h e r  Re la t ions  

The functional relations (BBP4.20) and (BBP4.21) are unchanged by 
the substitution p' --* Vp' in the last column, so are true for all values of the 
skew parameter r. In particular, using our matrix S(q j), we can write 
(BBP4.21) 

S ( j +  1)2 7 ( (Dj  t ~ - -  r ~ (j) - -  ( j) j+ l t q )  ] L  S(qj+ 2) q 2~ ,ql - co [Cn#p(tp - o ) J l q ) ]  L X a q  --~ [ ~ p , ( t p ,  

(3.9) 

This equation is true for all integers j; S~ ) is not fully periodic of period 
N, rather it satisfies the quasiperiodicity relation 

= (j~_ 1 - Up Pq o~ (3.10) s(j+N) ( y p - - x q )  Sq - .N _N Sq 
q [~p, - -  tXq ,/ 

The only effect of the p ' ~  Vp' substitution on the z-relations 
(BBP4.27) is to multiply each function z by a factor co. Iterating, this 
becomes a factor (o r and the equations become, for any integer value of r, 

rj(t)  % ( e / -  10 = COrXZ(cO j -  It) rj_ ~(t) + rj+ ,(t) 

Zj(COt) %(t) = oSXz(f~t) zj l(oj2t) + Zj+ ,(t) 

ZN+ l(t) = ogrXz(t) z N l(O)t) + ~q -I- ~-q 

(3.11) 

where the first two sets of relations are equivalent, holding for j = 1 ..... N, 
and 

Z(tq) = Eco#p#p,(tp- tq)(tp,- tq) ] L (3.12) 

N N N N 
O~q = [ # q  ( y p  (3.13)  - xq ) ( y p , -  x ~ ) / k ' ]  L 

~q = [#qN(yN--  yNq )(ypU-- yff)/k']C 

We remark again that throughout this paper xp, Xp., yp, yp,, #p, #p, 
are regarded as fixed constants; and Xq, yq, #q as complex variables, 
satisfying the relations (2.2). 
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Using (2.2), we can establish that 

Z(tq) Z(OMq) ".. Z(09 N ltq) = O~q~q (3.14) 

To summarize so far: we have generalized (and slightly simplified) the 
functional matrix relations of ref. 16 to skewed boundary conditions, the 
resulting relations being (3.5), (3.9), (3.11). They are not independent: as is 
expained in ref. 16, (3.11) can be obtained by premultiplying (3.9) by Tq, 
then using (3.5) and considering the effect of interchanging xq with yq. 

Postmuttiplying (3.5), (3.9), (3.11) by x, it becomes obvious that the 
functional relations continue to hold if the matrices are replaced by their 
eigenvalues (there are many solutions, corresponding to the various 
eigenvalues): we shall use the same notation both for the matrices and their 
eigenvalues. 

Note that r and X enter these functional matrix relations only via the 
combination corX, so in fact the equations are the same as for periodic 
boundary conditions, but with a modified interpretation of X. 

Using (2.19), we can replace by its appropriate eigenvalue m e, where 
Q = 0  ..... N - 1  (i.e., Q is a quantum number for the equations), so Q is 
simply replaced by Q + r (mod N). Otherwise the equations are unaltered 
and we have the same solution set as we had before (when r was zero). The 
only difference is that we have to select a new subset of these as the allowed 
solutions for a given r. Precisely this happens in the Ising model, where for 
skewed boundary conditions (o-L+ 1r a l) we still obtain the result (3.38) of 
ref. 28 for the eigenvalues of the transfer matrix, but the accompanying 
selection rules (the number of i-particles being even or odd) are reversed. 

Another (related) functional relation that we shall need in (BBP4.20). 
If we explicitly manifest Tq as a single-valued function of Xq, yq, ~q and 
write it as T(xq, yq, #q), then by using (2.22) and the property mentioned 
before (2.27), we can write (BBP4.20) (in the normalization of this paper) 
a s  

F yq)(tp, tq) 

[_ Yp" - -  yq 

+ (yp,--COyq)(tp--OOtq) T(xq, o~2yq,#q) (3.15) 
Xp -- 09yq 

We shall find this form convenient for discussing the low-temperature limit. 

4. REAL F O R M S  

The above notation has the advantage of displaying the algebraic form 
of the functions and coefficients, but obscures that fact that under certain 
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conditions the Boltzmann weights and transfer matrices are real. We 
introduce constants )~, ( such that 

2 = 7t/N, ~ = #;42 09 = ~4 i= ~N (4.1) 

and further rapidity variables Op, Op, Up, Vp, rip so that 

X p  ~- e 2i~bp, y p  = e 2i~ 

(4.2) 
20p = Up + Vp, 2(9p = Up - -  Up, lap = ( - leivprip 

Then (2.2) implies that 

COS Nvp = k cos Nup, riu _ sin 2NOp k' cos Nup 
k' cos NUp sin 2Nqkp tp = e 2eu" 

(4.3) 

We have changed the notation slighly from the introduced in w of ref. 29 
and used in refs. 17 and 18: the O, ~b, u, v of those papers have been 
replaced by 2 0 -  7r/N, 2qk, N u -  7r/2, N v -  re/2, respectively. We can think of 
Up as the fundamental variable, Vp, Op, Op, Xp, yp, rip, lip being defined by 
these equations. 

Then (2.4), (2.5) can be written 

( ) n j ~ = l s i n ( q ~ p - O q + j 2 )  
Wpq(n)= ~q sin(~bq --- 0 - ~  j2) 

WV'pq(n) -~ (ripriq)n f i  sin(~bq -- ~bp + j 2  - 2) 
j=l o-T;-j l 

(4.4) 

and we can deduce that 

sin(Oq -- Op + j2 -- 2) 
riq)-O 1-I s- n g-?--SFi 

j = l  
(4.5) 

Remembering that 0 < k < 1, we see that if up, Uq a r e  real, then so are vp, 
N and N N U If Vp and Vq are chosen between 0 and 2, then rip riq a r e  Vq, rip , riq. 

positive and we can choose rip and riq to  be positive real, so that Boltzmann 
weigh ts  mpq(n), l~pq(rl) are real. Further, if Up < Uq < up + )~, then the 
Boltzmann weights are positive, as is required for a physical syustem. From 
the Perron-Frobenius theorem (for all values of the skew parameter r), the 
maximum eigenvalues of Tq and Tq must then be positive real, as must be 
the elements of the eigenvectors. Hence the corresponding eigenvalues of Tq 
a n d  ]~q must be real, for all q with Uu, riq real and 0 < Vq < 2. 

The same is not necessarily true for T0kt- Remembering that 
Xqkl = f-OkYq, Yqpkt = ( ,o l xq ,  liOkl = 1/liq, we see that uok t = Uq + (k +/)2,  
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Vqkt= -Vq + ( I - k ) 2 ,  tlokt= ~2~k ~+ 1)/?lq. Hence ?lqkl is not in general real. 
However, its Nth power is real, so from the remarks before (2.27) 

~"77kl ~--- ~2r(l k 1) X {real matrix} (4.6) 

Let 

flq = (2~) Lexp[--iL(Oq+(gq+Op+Op,)] 
(4.7) 

7~J)= 2--L~U--1) (--LIN+j+ 1) exp{ --iL[NOq + jO e + (N- j )Op,]  } 

and define modified coefficients and matrices 

Then 

(k,l)* _ --1 ,(k+l) (k,/)  Aq - - f l q  rq  Aq 
Hpq(J)~ --  ~L(N + I--j)(J+ [~ qj- N~q(J)m)~q(j) 

--(j)* __ ~L(N + 1 --j)(1 --J) l~-J ' f (J )H (j) O L q  __ r q ~q p'q 

(j)'f __ ~2r(k + 1 S q - -O A~qk'O*XkTokl 
Tj(blq)t  = ~ 2 r ( 1 - - j ) ~ L ( N + I - - j ) ( j - - 1 ) f l j - - 1 g j ( t q )  

We introduce a notation similar to (2.23): 

( l~t)m,n = FI sin(u + j2), 
j = m + l  

= l~I {sin(u+j2)} -1, 
j = n + l  

n>~m 

n <~m 

t ] p , ( ~ ) q - - ~ p , )  1, / - -1  

L 

( sin(NOp - Neq) J 

Hp,q (q~, sin(N~bq - N(&J 

Z(Uq)* = {Opqp, sin(uq - up) sin(uq - up,)}L 

%=* {(22-N/k')tl u sin(NOp- N(Jq) sin(NOp,-- N(~q)} L 

a*q = { (22- N/k')tlq N sin(NOq - NOp) sin(NOq - NOp,) } L 

(4.8) 

(4.9) 
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Thus, if Up, Vp, tlp, Uq, ~)q, tiq are real, then so are these modified 
# coefficients. Further, Tq and Sqlk~ are real matrices. The property (3.14) 

becomes 

Z(Uq) t Z(Uq + 2)* Z(Uq + 22) t �9 - �9 z(uq + N2 - 2) t = %%* -* (4.10) 

and the functional relations (3.5), (3.9), (3.11) become, for 0 ~< r <  N - 1 ,  
O<~j<<,N, 

TqS(qj)t -(J)t .  i. , t  " " =Hp,q ~,j~Uq) Jr- (-- 1)L+rxas(J) t ,  N j ( U q + s  (4.11)  

S(j + t )t~ (,, • = XS  q q ~2~-q T J2) t [tip s i n ( u , -  Up + j 2 ) ]  L (J)* 

+ [tip, sin[uq--Up,+j)~+ L (j+2)* 2)] Sq (4.12) 

't'j (/*/) # T2(U "}- j~  --  ..']~) f = Xg(u + j 2  -- 2)*'cj_ l(u) t + "cj+ t(u) t 

zj(u + 2)* %(u) t = Xz(u + 2) t zj_ l(u + 22)* + zj+ l(u)* (4.13) 

TN+ l(Uq) t = (--1)L XZ(Uq)+ ,.CN - l(Uq .~_ ,~)* jr_ (--1)r O~qt -I- (--1)L + ra t  

from which we deduce that the zj(u) t are also real matrices. In particular, 
%(u)*= 0, %(u) t =  1. If the eigenvectors are also real, the corresponding 
eigenvalue of X being one (as must happen at least for the maximum 
eigenvalue of Tq for each r), then these become a set of real functional 
relations for the eigenvalues. 

From (2.8) and (4.4), we can regard Tq as a single-valued function 
T(Oq, ~q, tiq) of the related variables Oq, (~q, tiq. Then Eq. (3.15) becomes 

z2(u)* T(Oq + 2, ~)q, tiq) 

I~lptip, Sin(Oq-~bp) sin(uq- UpO] L 
= sin(Oq - -  Op,) XT(Oq, Oq, tiq) 

Jr" s ~ n ( O - q - - ~ 7 ~  Z(Oq+2,~,~q, tiq) (4.14) 
[sin(Oq--Op, + 2) sin(uq-- Up + 2)] L 

The partition function Z is given by (2.11), which can be written as 

Z = Z  (TqTq) M (4.15) 

where now the matrices Tq and 7~q have been replaced by their eigenvalues, 
and the sum is over all eigenvalues, i.e., over all solutions of (2.13). A useful 
identity that follows from Eq. 2.46 of ref. 16 is 

k' sin N(uq - -  U p )  = 2ti u sin N(Op -- ~q)  sin N(~q -- ~p) (4.16) 

= 2tiq N sin N(Oq -- Op) sin N(Oq -- r (4.17) 
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5. ZERO-TEMPERATURE LIMIT: THE LARGEST EIGENVALUES 

Consider the case when k' is small, Up, Up. are of order k', and 
0 < Uq < ~/N. Then Vp, Vp, are positive, of order k', and Vq ~- Uq. If we set 
k ' = c  N, then #p, pp, are of order unity, #q is of order e -I ,  and to leading 
order xp, yp, Xp,, yp,, Xq = 1, yq = tq. Hence 0p = ~bp = Op, = Op, = ~bq = O, 
Oq = Uq =Vq, and from (4.4), using IT/pq(N)= 1, we can deduce that, for 
O<~n<N,  

()~176 
= - -  l-[ sin(j2) - O ( : )  

mpq(rt) tip sin(j2 - -  Uq) 
~]q j = l  

(5.1) 

f f ' pq ( -n )  = (qPqq)-"j~= sin(Uqsin(j2)+j2 -- 2) = O ( : )  

From now on, in this section and in the Appendix we write Uq simply 
a s  b/. 

From (2.8) and Fig. 1, the matrix T has elements of order d, occurring 
when the sequence %, a'l, a2 ..... a~., aL+l is monotonic nonincreasing. All 
other elements are of higher order. Similarly for ;e (with the a.r replaced by 
a~;). Hence to leading order in ~ we can truncate the matrices, retaining 
only these elements and the corresponding configurations of the spins 
within a row. 

For  r = 0 (i.e., for nonskewed boundary conditions) this leaves only 
the states where all the spins in a row are equal to some common value a. 
There are N such values, so the matrices are N by N, but they are diagonal, 
as the spins in adjacent rows must also be equal. In fact, since Wpq(O)= 
ff/pq(O) = 1, they are the unit N by N matrices, so all their N eigenvalues 
are 

Tq= f'q= l 

For r = 1 the generic row spin configuration occurs when 

(5.2) 

O'1 ~ 0 " 2 :  ' ' "  ~ G j : O "  
(5.3) 

O ' j + l  ~O ' j+2~ . .~ -  - - -  ~ O ' L + I ~ O ' - -  ~ 

where ~r = 0 ..... N -  1 and J =  1 ..... L. Let x<: ,  y < j  be the corresponding 
elements of the eigenvector matrices x, y. Then the eigenvalue equations 
(2.13) become 

Tqx l.l = Wpq(1) y bl-1 q- I Tp,q(--1) y, lj 

f qy<j= Wp,q(1)x lj + lYVpq(-1)x<:+ l 
(5.4) 

822/73/3-4-2 
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where J =  1 ..... L; Tq and Tq are now the eigenvalues of the transfer 
matrices; and we have the boundary  conditions x o l r + l = x ~ + l l l ,  

Y~lo = Y`,-llL. 
These eigenvectors must  also be eigenvectors of  the spin-shift opera tor  

X. Let the corresponding eigenvalue of  X be 

X = o )  Q, Q = 0  ..... N - 1  (5.5) 

Then for all J, X`,Ij=-COQx`,_t_IIJ, y ` , l j = ( . o Q y ` , + l l j = c o a y ` , + l t j .  Hence the 
boundary  condit ions reduce to x`, i c + 1 = co- ax, ,  11, Y,~ I o = c~ I c.  

Equat ions  (5.4) are simply difference equat ions with constant  coef- 
ficients and  quasiperiodic boundary  conditions. Their solution is 

x~ , j  = y` , , j  = co-Q`, e iks (5.6) 

where the wave number  k is given (modulo  2u) by 

e ilk = co Q (5.7) 

The corresponding transfer matrix eigenvalues are 

Tq = e - i k W p q ( 1 )  + W p , q ( -  1) 

= Wp,q(1) + eik # p q ( -  1) 

Using (5.1) and defining 

we find that  these results become 

(5.8) 

(5.9) 

fie ik sin(2 - u) + sin u L -  
tlp,tlq sin 2 

(5.10) 
i~q _ fl sin(2 - u) + eik sin u 

~'lpFIq sin 2 

There are N distinct eigenvalues of  X, corresponding to Q =  
0, 1 ..... N -  1. For  each of  these there are L distinct solutions of (5.7) for the 
wave number  k (modulo  2n). Hence we have N L  eigenvalues of  TqTq,  as 
expected. 

The next case is when r = 2. Then a typical configuration of spins in 
a row is a, a ..... a, a - 1 ..... a - 1, a - 2,..., a - 2. This can be specified by the 
locations J', J '  of  the decreases in spin value, where 1 < J ~< J '  < L, the case 
J = J '  corresponding to a direct decrease from a to a - 2 .  Hence the 
t runcated transfer matrices are of dimension N L ( L -  1)/2, and there must  
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be this number of eigenvalues. Let x~l j s . ,  Y,~l.,'s' be the corresponding 
elements of the eigenvectors x, y. Then we find that the eigenvectors are 
given by 

XalJJ '  = Y a l J J '  = ( I ) - Q a { s ( k l ,  k2) exp(  i k l J  + i k2J '  ) 

- s ( k  2, k~) e x p ( i k 2 J  + i k~J ' )  } (5.11) 

where 
s(k ,  k ' )  = e i(k + k ' ) -  2fl cos 2elk '+ f12 (5,12) 

and k t, k 2 are parameters that can be regarded as defined by the boundary 
conditions X . I Z L  + ~ = X~+ ~l ~,s, Y~lo, s = Y o -  ~IS, L" These give 

eiCk~ = - - a ~ - Q s ( k l ,  k2) / s (k2 ,  k l )  

eiCk:= -~0  Os(kz,  k l ) / S ( k l ,  k2) 
(5.13) 

Note that these expressions are independent of u: the eigenvectors x, y 
are independent of the horizontal rapidity q, as expected. We are free to 
multiply x, y by arbitrary constant coefficients: this affects Tq, Tq, but 
not their product (which is the full two-row transfer matrix). The corre- 
sponding eigenvalues Tq, Tq are products of the respective right-hand sides 
of (5.10) over k = k l  and k = k 2 .  

The expression (5.11) is a typical Bethe ansatz ef the type used by 
Yang and Yang (3~ for the anisotropic Heisenberg chain, and by Lieb/3~) 
and Sutherland ~32) for the six-vertex model. Although we have not fully 
verified it, the generalization to arbitrary r is presumably 

X~lJb...,jr'=y~rljb...,jr=O) O ~  eeA(kl,...,kr)ei(klJl+"+krJ'~ (5.14) 
P 

where the sum is over all permutations P of k~ ..... kr,  ee being the sign 
( _  1) of P, and 

A(k, ..... kr)  = l-[ s(k~, kj) (5.15) 
i<~i<j<~r 

Then k~,.,., kr are given by the r equations 

e iLkj = ( -  1) ' - lco-Q 1-[ s(k j ,  k , ) / s ( k , ,  k j )  (5.16) 
l = 1  

where j--- 1,..., r. Taking the product of (5.16) over j = 1 ..... r, we obtain 

eiL~kl + ... + kr ) = co - Qr (5.17) 
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The eigenvalues Tq, Tq are products of (5.10) over k = k s ..... kr, so 

r [fl sin(2 - u )  + e ikj sin u] 2 
Tq ~'q = U fltl2e ikj sin 2 2 j=l  

(5.18) 

In fact, it is quite easy to verify these last results by using the same func- 
tional relaton ideas that led to the solution of the eight-vertex model. ~33'25) 
If the sequence al ,  a],  a2,..., a)~, CrL+1 is monotonic nonincreasing, with 
aL+~ = a ~ - - r  and O<.r<N,  then from (2.4), (2.5), and (2.8), 

Tq ~- ~ q r F ( t q )  (5.19) 

which the elements of F(tq) are polynomials in tq of degree r. Thus in the 
zero-temperature limit s ~ 0 the relation (3.15) simplifies to 

T2(tq) fi'(fOlq) = o)r~'~[(.O~pllp,(1 --  tq)3 L F( tq )  -q- (1 -- r L F(fO2tq) (5.20) 

The eigenvectors x, y are independent of q, so any eigenvalue F(tq) is 
a linear combination of elements, and is therefore also a polynomial in lq 
of degree r. Similarly, we know from ref. 16 that r2(t) is a polynomial of 
degree L, so the same is true of its eigenvalues. Regarding (5,20) as an 
eigenvalue relation, it follows that the RHS must vanish whenever tq 
is a zero of F(cotq). This gives r equations which define the zeros of the 
polynomial F(tq). They turn out to be 

tq= (091/2fl--eikJ)/(CO-1/zfl--eikj), j =  1 ..... r (5.21) 

where kl,..., kr are given by (5.16). 
In this zero-temperature limit the commutation relation (2.12) sim- 

plifies (because f~q becomes a product of a function of p and a function of 
q) to Tq L = Tr Tq. This implies that corresponding eigenvalues Tq, Tq are 
proportional to one another, differing at most by a constant factor. Their 
normalizations can be obtained by considering the cases u = 0 and u = 2, 
when the transfer matrices become proportional to the identity or the 
translation shift operator. Finally we obtain the result (5.18). 

We have remarked that the equation are similar to those of Lieb and 
Sutherland. In fact (5.16) is precisely the equation for a six-vertex model in 
a horizontal field [Eqs. (136)-(147) of ref. 34; Eqs. (7.69) and (1.26) of 
ref. 35], except that s(k, k') is replaced by s(k', k), or equivalently L by 
- L .  The field disappears when f l=  1. We know ~5~ that the N-state chiral 
Potts model is related to such a six-vertex model. Here is another 
manifestation of this connection. 



Chiral Pot ts  Model with Skewed Boundary Conditions 479 

We shall find it convenient to make the standard "transformation to 
a difference kernel, ''(36,3~ transforming from k / t o  ~j, where 

e i~+ = fl sin(~g - ).)/sin a s (5.22) 

for j =  1 ..... r. Then F(tq) has zeros when (5.21) is satisfied, i.e., when 
tq = e 2i~s, and 

s(kj, k,) 
s(k,, ks) 

and (5.16), (5.18) become 

sin c~g 

Tq ~'q 

sin()~ - at + aj) (5.23) 
sin(2 - ~j + a+) 

=( - -1 ) r  lfl -L('O Q [-I sin(ag-:~++2) 
t=~ sin(el-- ~J + 3~) (5.24) 

r sinZ(u _ 7/) 

=s~I= r/q2Sin ~: sin(~s_2 ) (5.25) 

5.1. Interfacial Tension 

Now consider the partition function (2.11) and indicate its dependence 
on the skew parameter r by writing it as Z r. For k < 1 and r = 0 we expect 
the system to be ferromagnetically ordered into one of N possible phases, 
all of equal free energy, phase o- having a preponderance of spins with 
value a. (More precisely, in phase a the probability of any spin having the 
particular value a is greater than 1IN.) 

For r = 1 we still the expect the system to be ordered, but now the 
boundary condition (2.10) is inconsistent with the whole system being in a 
single phase. Rather, there must be an interface, running approximately 
vertically through the lattice, separating a a phase on the left from a a -  1 
phase on the right. 

For r = 2 there may be a single interface separating a a phase from a 
- 2  phase, or alternatively two interfaces, separating a, a -  1, and a -  2 

phases, as in Fig. 2. 
For j =  1,..., N - 1 ,  let e/ be the interfacial tension (i.e., the surface 

energy) of a surface of type j, i.e., a boundary between phases a and a - j .  
(Because of Z N invariance, e s is independent of a.) Take L (the number of 
sites per row) and M (the number of rows) to be large, with L >> M. Then 
we expect Zr/Zo to be a polynomial in L of degree r, expandable as 

Z r / z o =  E C(nl ..... r/N_ 1)exp { -  ~ nje /M/kBY}  (5.26) 
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J J + I  J '  J ' + l  

J;J, dq-1 

YJ-I,J' 

g, jJ ,  

Fig. 2. The r interfaces forced on the model by the skewed boundary conditions (for r = 2). 
In the zero-temperature limit considered here they must move monotonically up the lattice, 
so each interface passes through each row just once. They may coalesce. 

where nj is the number  of interfaces of  type j, kB is Bol tzmann's  constant,  
and Y- is the temperature. These nj must  satisfy Y. jnj = r. For  L large the 
coefficient c(n~ ..... n N _ l )  is the number  of  ways of  locating the various 
interfaces on the columns 1,..., L, so is a polynomial  in L of degree 
n~ + .-- + n u 1. In  particular, for L and M large 

Z 1 / Z  0 ~ d o e--~IM/kBY 

Z 2 / Z  0 ~ (d2/2)  e -  2~:M/kBJ- + d2e--e2M/kB~- 
(5.27) 

where do~-dl  and (to within factors that decay as powers of M )  

do, dl ,  d2 ~ L. 
The coefficients of  highest degree in L is c(r, 0,..., 0) ~ Lr/r!. Letting L 

become large, it follows that  

Z r / Z  o ~ ( Lr/r! ) e-,Mel/gB~ (5.28) 

and hence 

e l / k B 3 - = -  lim M - :  lim ln(r! L - r Z r / Z o )  (5.29) 
m ~ o o  L ~ o o  

Note  that  the limit L --+ c~ is to be taken before the limit M --+ ao. 
We expect these observations to be correct for all subcritical tem- 

peratures S ,  i.e., for k '  < 1. For  g" = k '  = 0 we can use our  previous results 
to calculate the ej. The easiest one to obtain is el, since this can be 
calculated from just  Zo and Z1. For  r = 0, the transfer matrices are the N 
by N unit matrix, so from (2.11) (in the zero-temperature limit k '  ~ 0) 

Zo = N (5.30) 
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For  r = 1, write e i~ as z. Then from (4.15) and (5.18) 

Z1 = ~ [/~ sin(2 - u) + z sin u]2M/(fiq~Z sin 2 2) ~ (5.31) 

where the sum is over all the eigenvalues of Tq Tq, i.e., over all solutions for 
z of (5.7), i.e., of z L =  og-Q: For  a given value of Q this equation has L 
distinct solutions, corresponding to all the eigenvalues in the sector with 
X =  ~o Q. Letting Q take all its allowed values 0 ..... N - 1 ,  we see that the 
sum in (5.31) is over all the NL solutions of 

Z NL ---- 1 

It follows at once that for - N L  < j  < NL 

(5.32) 

z: = NLfj, o (5.33) 

then sum also being over all solutions of (5.32). 
Using the binomial theorem to expand the numerator  in (5.31) and 

defining 

= sin u sin(2 - u)/(rlq sin 2) ~ (5.34) 

provided M < NL, we obtain the exact result 

ZI = NL (2MM ) ~M (5.35) 

Substituting into (5.29), taking r = 1, it follows that 

e l / kBY  = --ln(4~) (5.36) 

For  r > 1, we can obtain a simple upper bound for er by noting that 
if we only consider row states where the spins jump immediately from o- to 
o - - r  (with no a - 1  ..... o - r +  1 spins in between), then we obtain 
Eqs. (5.4)-(5.8), but with Wpq(1), Wpq(-l) replaced by Wpq(r), Wpq(--r). 
The Z~ calculated in this way is a restricted sum over configurations; 
since all the Boltzmann weights are positive (provided 0 < Uq< )~), it is 
therefore less than the true partition function Zr. Noting that in the zero- 
temperature limit Wpq(r) VVpq(-r)= Wp,q(r) Wp,q(-r), it follows that 

e r / k , Y  < - ln [  4 Wpq(r ) ff'pq( - r) ] (5.37) 

for r = 2 ..... N -  1. In particular, this implies 

ez - 2el (sin 2 2 sin(u + 2) sin(22 - u)'] 
k-----~< - I n  \ ~ s i n 2 ( ~ - n u  s i n ( 2 _ u )  J (5.38) 
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The RHS is negative for u sufficiently close to 0 or 2, so at least for these 
values ee<2g~. This means that the system prefers to go straight from 
phase 2 to phase 0, rather than from 2 to 1 to 0: phase 1 does not wet the 
interface between phases 2 and 0. 

The partition function Z2 is calculated exactly (in the zero-tempera- 
ture limit) in the Appendix, being given by (A10), (A12): we finid that it 
does indeed have the form (5.27), and g 2 < 291 for all u between 0 and 2, 
so phase 1 does not wet the (0, 2) interface. 

Further investigation of the r = 2 case shows that for L large there are 
two types of eigenvector: "plane waves," in which kl and k 2 a r e  both real, 
and "bound states," in which they are complex and either s(kl ,  k2) or 
s(k2, ka) vanishes. The number of the first (second) type is of order L 2 (L) .  

The two types give the two contributions to Z2 in (5.27). 
This suggests that for arbitrary r (from 2 to N -  1) the er contribution 

to Z ,  comes from states in which all the r dislocations are bound together. 
This will happen if s(kj+l,  k j ) = 0  for j =  1,..., r -  1 and I m ( k , - k l ) > 0 .  
Equations (5.16) are then individually satisfied and (5.14) reduces to a 
single sum, only the identity permutation giving a nonzero contribution. 

From (5.23) we must have c~j+l = ~ s - 2 ,  so 

~ j = ( r c / 2 ) - Z - I  s, j = l , . . . , r  (5.39) 

where 

I~ = ( j -  1 - r/2)2 (5.40) 

and the parameter Z is determined by (5.17), i.e., 

cos(z + r2/2) 
fir __ p (5.41) 

COS(;~ -- r2/2) 

where 

pL =co o, (5.42) 

When qp = qp, = 1 and Q = 0, then fl = 1 and this equation has the 
simple solution Z = 0. In this case 

eikj= c o s ( j -  r/2)2 
c o s ( j -  1 - r /2)2 '  j =  1 ..... r (5.43) 

Remembering the definition (4.1 ), 2 = ~/N, and that r < N, we have that the 
RHS of (5.43) is always positive real, so we can take k~ ..... k, to be pure 
imaginary. They are distributed symmetrically about zero: k r + ~ _ j = - k j  
and Im(k,) > 0. 
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To within an irrelevant normalization factor independent of a, 
J1 ..... Jr, the RHS of (5.14) is therefore always positive, so the eigenvectors 
x, y have positive entries. The transfer matrices Tq, ibq also have positive 
entries (for 0 < u <  2), so from the Perron-Frobenius theorem we have 
found the largest eigenvalue of Tq ]'q in the large-L limit. 

Further, if u = 2/2, t h e n  ~i~q = Tq*, so Tq Tq is real and symmenric. All 
its eigenvalues are therefore real, so for M (and L) large the sum in (4.15) 
is dominated by the contribution from the largest eigenvalue. Using also 
(5.26), (5.25), and (5.39), it follows that 

~r In Tq f'q 
kB3-- 

- j~-i  (c~ 
- -  in (5.44) 

The contribution to Zr from er is (for large M) greater that that from all 
the other terms in (5.26), so there is no wetting by intermediate phases. 

From (5.39) the c~j can be regarded as forming a horizontal "string" of 
length r in the complex plane. Such solutions of the Bethe ansatz are welt 
known, but usually they correspond to excited states of the system: here 
they correspond to the ground state (i.e., the largest eigenvalue of the 
transfer matrix). This difference can be ascribed to the fact that our s(k, k') 
is that of the six-vertex model, but with k and k' interchanged. 

The situation is mathematically more complicated for u#2/2, 
0 < u < 2, although we do not expect any qualitative change in the physical 
behavior. The eigenvalues are then no longer real, so when both M and L 
become large it is possible for the contribution to (4.15) of the largest 
eigenvalue to be canceled by those from nearby eigenvalues with different 
phases. This happens in the calculation of the correlation length of the 
eight-vertex and hard-hexagon m o d e l s  (37'24) and here we use similar 
techniques to handle the problem. 

We have to keep all the allowed bound-state eigenvatues given by 
(5.39) and (5.41). First continue to suppose that 131 = 1. Then Re(g) is 
either 0 or g/2. The latter case violates the restriction Im(k r -  k l ) >  0, while 
the former satisfies it. Hence Z lies on the imaginary axis. 

As L--, 0% the solutions of (5.41) for X become infinitely dense 
everywhere on the imaginary axis, so the sum (4.15) becomes an integral 
over X along he imaginary axis (weighted by some M-independent density 
function). 

Regard TqT".q, as given by (5.25) and (5.39), as a function of •. It 
appears that it has a ridge along the real axis of the complex Z plane, with 
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a saddle point Xo between (r2 - re)/2 and (~ - r2)/2. (For u = 2/2 it is at the 
origin.) At the saddle point the derivative vanishes, i.e., 

{2 t a n ( X o + U + I j ) - t a n ( X o + / j ) - t a n ( z o + / j + l ) }  =0,  IZol < (rc-r2)/2 
j = l  

(5.45) 

which conditions can be regarded as defining the real parameter X0. It 
should be a continuous function of u, zero when u = 2/2. 

Hence the X integration can be deformed so as to cross the ridge at the 
saddle, doing so along a part wherte Tq iPq is real and positive. In the limit 
of M large, the integral is then dominated by the contribution from the 
saddle point (where Tq Tq is maximized on the path), so 

zr~(rqL)Ml : o, 
(5.46) 

e, i l n (  cos2(;go + u + Ij) ) 
kB~-- r/2 cos(x0 + Ij) cos(x0 + Ij+ 1) j = l  

If Jill r 1, then the contour of integration shifts off the imaginary axis, 
but the saddle point is unaltered (because TqTq is independent of fl). So 
long as the contour does not cross any singularities in the X plane, there 
should therefore be no change in the large-M behavior of the integral: er 
should be independent of fl (as indeed we have observed for r = 1 and 
r=2 ) .  

For r = 1 and 2 we have verified that (5.45) and (5.46) agree with our 
explicit results for Z1 and Z2: more detail is given at the end of the 
Appendix. 

Another interesting case is when It/p] = [~p,] = 1 and u-2/2 is pure 
imaginary. Then To = Tq*, so the matrix TqTq is Hermitian. The eigen- 
values Tq Tq are therefore real and again the sum in (4.15) is dominated by 
the largest eigenvalue. In this case the integration is still along the 
imaginary ;( axis, but now the saddle point lies on this axis, so there is no 
need to deform the contour. One still has to locate it by solving (5.45) 
(modifying the subsidiary condition on its location), and again 8r is then 
given by (5.46). 

Using (5.9), note that the vertical rapidities p, p'  enter the transfer 
matrix elements (in this zero-temperature limit) only via ft. Hence inde- 
pendence of fl is here equivalent to independence of p and p'. In fact we 
expect this to be true from "Z-invariance" arguments (38) in which we allow 
the rapidities of all the vertical lines to be different. Provided the system is 
"physical" (certainly if all the Boltzmann weights are positive), the free 
energy of a vertical interface should only depend on the vertical rapidities 
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near it. However, because the column-to-column transfer matrices 
commute, the partition function is unchanged by permuting the vertical 
rapidities, so any rapidity can be moved to a line far from the interface. It 
follows that each er must be independent of all the vertical rapidities, and 
hence of p and p'. 

This independence may be useful in calculating the interfacial tensions 
for nonzero temperature. It appears that we should be able to obtain them 
in general by considering only the "superintegrable case," when Xp, =yp, 
yp, = Xp, and lAp, = l/lAp. (2 14) In this c a s e  Op, = ~p, ~p, = Op, ~p?]p, = e i2, s o  ~p  

and qp, cannot both be real and we are ouside the physical domain in 
which the Boltzmann weights are real and positive. We have to be careful 
about using Z-invariance arguments. However, the zero-temperature solu- 
tion considered here can certainly be analytically continued to arbitrary 
complex values of t/p and qp, (of order unity), so contains a superintegrable 
case. This suggests that Z invariance can indeed be used, and the interfacial 
tensions obtained for the general model from the superintegrable case 
(at least within appropriate domains in the complex p, p', q planes). 

6. SUPERINTEGRABLE CASE 

Setting k = l = j = O  in (3.1)-(3.5) and (2.26), we see that  Tqf/'oo 0 is 
proportional to the matrix rN(tq). This is a simpler matrix function than Tq 
itself, being just a polynomial in tq, determinable from (3.11). [In refs 17 
and 18 it is pointed out that the functional relations can be solved by first 
solving (3.11) for the r matrices, then solving (3.5) for Tq.] The model 
therefore simplifies if the row rapidities alternate, being successively q = 
{Xq, yq, lAq} and 000= {yq, Xq, lAql }. If we rotate the lattice through 90 ~ 
then it follows that simplifications should occur (for all row rapidities q). 
when the alternating column rapidities p and p' satisfy 

Xp,= yp,  y p , =  Xp, lAp,= 1/IA p (6.1) 

Indeed they do, This is the "superintegrable" case. It (more specifically 
the homogeneous superintegrable case, when Xp=yp, lAp----= 1) has been 
discussed in a sequence of papers. (2 14) In Eq. (2.22) of ref. 5 and Eq. (2.21) 
of ref. 14, McCoy et al. have proposed an ansatz for the from of the 
eigenvalue function Tq. Here we show that the functional relations simplify 
for the superintegrable case, and that they imply this ansatz. 

The general method for solving the functional relations is given in refs. 
17 and 18; here we specialize it to the superintegrable case. First we con- 
sider the algebraic form of the eigenvalue function Tq. From (2.4), (2.5), 
and (2.8), all elements of the transfer matrix T depend on q as lA~-rx 
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(rational function of Xq, ~q). Since the eigenvectors are independent of q, 
each eigenvalue Tq must also have this form. The only poles are when 

N N N N These poles are counted in ref. 18, Xq = y p ,  o r  equivalenbtly yq = Xp. 
except that here we should replace p in W, O therein by p' (which 
makes O0.=O~j). We find that the poles of Tq are the zeros of 
(x N _  yN)L/(Xq_ yp)L. Similar considerations (with p replaced by p') apply 
for i?q. It follows that 

(Xq - - yp )L  ~-(Xq,  yq) 
Tq = NL/Z#q r (x N _ yN)L 

(6.2) 
~q = NL/Z#q r (Xq -- Xp) L ~-(xq, yq) 

xy)  L 

where J-(Xq, yq), J-(Xq, yq) are polynomials (multinomials) in both Xq and 
yq, e.g., Y-(x, y) = ~ i  Z j  co.xiY i, where the sums are over a finite number of 
nonnegative values of i and j. We can use the relation (2.2) to ensure that 
i and j do not both exceed N -  1. 

[We have used the fact that if P(x, y) is a polynomial in variables x 
and y satisfying (2.2), i.e., xU-}-y  N =  k(1 + xNyN), and if P(x, y) vanishes 
when x = x 0 for all the N corresponding values of y, then P(x, y ) / ( x -  Xo) 
is also a polynomial in x and y.] 

Using Eqs. (2.48) and (2.49) of ref. 16, we can establish that 

N N 
Up'e l  N--1 Xq--  yp X q -- Xp 

N N fpq #P Xq -- Xp Xq -- yp 
(6.3) 

The commutation relation (2.12) therefore simplifies to 

(6.4) ff-(Xq, yq) ,5 r (Xr, Yr) = J-(Xr, Yr) ~-(Xq, yq), Vq, r 

which implies that J-(Xq, yq) is proportional to ~--(Xq, yq). 
Substituting into (2.22), (2.26), we obtain 

ff-((l)Xq, 0,) l y q )  = (D--Q--r--Lff-(Xq, yq) 

(j)__ --L/2 r jL L Sq - N #q#p  (yp - Xq) J - ( y q ,  (DJxq) 

(6.5) 

(6.6) 

and the functional relations (3.5) become, for 0 ~<j~< N, 

~-(Xq,  yq) ~ ' ( y q ,  (DJXq) 

= ( t p ,  tq)j L_ i,N-- 1 "cj(tq) -}- O) j(r+ Q + L)(tp, tq) L 1,j-- I 7:N--j((OJtq) (6.7) 
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Let 
N - - I  

J(xq, yq) = U ~'-(Xq, (OJyq) ( 6 . 8 )  
j = 0  

This is a polynomial in Xq and yq. Using (6.5), we can establish that 
J(xq, yq) = J(OgXq, yq) = J(Xq, ~yq), from which it follows that J(Xq, yq) is a 

N and yN. Using (2.2), we can therefore write it as a polynomial in Xq 
N Laurent polynomial in the single .variable #q. 

N Consider the limiting case when [Jq- '~  0, As in (2.3), define Aq =lAq. 
which from (2.2) implies that Xq -~ 0% while Xq#q and yq tend to finite non- 
zero limits. Then [/Vpq(rt), J~/'p,q(n), and Tq also tend to limits, so from (6.2), 
~--(Xq, yq) diverges at most as strongly as #q-~lv 1)L, and J(xq, yq) as 
Aq (u-1)c. Likewise, when /~q--* ~ ,  then J(xq, yq) g r o w s  no faster than 

r Aq. It follows that 

J(xq, yq) = A q-(u- ~)rfr (6.9) 

where re(A) is a polynomial of degree at most ( N -  1)L. re(0) may be zero. 
Similarly, interchanging Xq and yq, inverting #q, and remembering 

that J -  ~ : - ,  we find 

N--1 
I~ ~-(Yq, ~~ Aqr+(N-1)rf~(Aq ~) (6.10) 

j = 0  

where ~(A) oc fg(A). 
The RHS of (6.7) is a polynomial in tq=Xqyq of degree at most 

( N -  1)L. Taking the product of (6.7) over j =  0,..., N -  1 and using (6.10), 
we obtain 

Y(Xq, yq) = [Aq tN-1)L~(tq)/f~(A{~)],/N (6.11) 

where ~(tq) is a polynomial of degree not greater than N ( N - 1 ) L .  
From (2.2), tq and Aq a r e  related by 

2 N k tq = 1 + k ' 2 - k ' ( A q + A q  ~) (6.12) 

Thus, if ~(tq) contains a factor^ tqN-- toN, then this can cancel factors 
A q -  A o and/or A q - A o  I in fr where to, Ao are constants related by 
(6.12). Such cancellations are obviously necessary to ensure that J(Xq, yq) 
is finite for all finite values of Xq, yq. 

Further, J(Xq, yq) is single-valued. Counting the zeros and poles of 
~(tq)/f~(Aq 1) (one way is to use to O, O functions introduced in ref. 18), 
we find that reduces to 

:-(xq, yq) - ~o ~b -Pc --Xq yq Aq F(tq)G(Aq l) (6.13) 
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where F(tq), G(Aq) are polynomials of degree mp, mE, respectively; P~, Pb, 
Pc are integers, and without loss of generality we can choose F(0), G(0), 
G(k'), G(1/k') to be nonzero. 

Substituting this form into (6.2), we obtain 

Tq= NL/2 ( x q -  yp )L .04 ~'b P,, (XNq_y~) c Xq yq #q r ( tq)G(#q N) (6.14) 

where P,  = r + NPc. 
Again considering the limiting cases #q ~ 0  and ~ ,  we obtain the 

inequalities 

Pb + me <~ P~ <~ (N--  1 )L -- Pa - N i n e -  me (6.15) 

Also, considering the limits Xq ~ 0 and yq ~ 0, we find that Pa, Pb must be 
nonnegative, as of course are mp and me. From (6.15), so therefore is Pu- 
From the definition of P ,  and from (6.5), 

P ,  = r, mod N 
(6.16) 

P b - P a = Q + r + L ,  m o d N  

The result (6.14) is precisely the ansatz postulated by Albertini et al. 
in Eq. (2.22) of ref. 5 for the case r--0.  Then (6.15) is their inequalities 
(2.27), while (6.16) is consistent with their observations (2.26). 

The case r, me = 0, when F(t) is a constant, was discussed in ref. 3; the 
m,x  therein are our me, Xq/yp. In this case P b = P , = 0  and 
P a = ( N - 1 ) L - Q ,  m o d N  (i.e., 0~< Pa<N) .  

Functional Relations for F and G. We now substitute these 
forms into the functional relations (6.7) and (3.9)-(3.t5). Since J -  is 
proportional to J-, it can be taken as also given by (6.13), but with G 
replaced by G, where G(A) oc G(A). We obtain 

t Pa+ PbF(tq)F(coJtq) G(Aq l) G(Aq) 

= ~0 -Jeb(tp, tq)j 1,N 1 "~j ( tq)  "Jr- (.D --JPa([p,  L �9 L t q ) - - l , j  1 7~N j ( f D J t q )  (6.17) 

Both (3.9) and (3.15) simplify to 

"C2(/q) F(fOtq) ~- (1) ea(tp-- tq)CF(tq) + coPb(tp- Ogtq) L F(ogztq) (6.18) 

while the r relations (3.11) are unchanged, except that the definitions 
(3.12), (3.13) reduce to 

Z ( t q )  = ( D L ( t p  - -  t q )  2L (6.19) 

~q = ~q = (t N -  tu )  c (6.20) 
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Apart from simple constants, the relation (6.18) is the same as (5.20), 
and is very similar to the corresponding equation for the six-vertex 
model~.g . ,  Eq. (9.4.3) of ref. 25. One can solve it in the same way. As in 
ref. 5, let 

mp 

F(tq)= [~ (1 +ogVttq/tp) (6.21) 
l=l  

where va,..., Vm/. are constants. Setting tq = --(O 2tp/Vj in (6.18), we find that 
the LHS vanishes and we get, for j = 1,..., mp, 

(1.)j'q'-(l) 
--lx~ L me V j - - ( D  11) l 

vj + 09-2J = - ~  Po- eb t=[I1 v j -  ogv+ (6.22) 

[-when N =  3 this is precisely Eq. (4.4) of ref. 5]. Making the transforma- 
tion corresponding to (5.22), i.e., v/= - - o ) - l e  -2i~j, and remembering that 
fi = ~/N, we get 

c "" s in(ej-  at+ 2) 
\(sin(~J-sin 0~j ~! = - - o P a +  Pb +rap+ L/2 '=11--[ sin(0~j- ~+- 2) (6.23) 

This is precisely Eq. (5.24) of Section 5, but with /~-Lm-Q replaced by 
09 Pa+ Pb+mp+ L/2 and r by rap. 

Equations (6.23) define ~,..., emp. They have the remarkable property 
that they are temperature independent. Apart from the rather trivial phase 
factor outside the product, they depend on the original Boltzmann weights 
only via N. This is not a new observation--it is presumably related to the 
connection of the chiral Potts model with the six-vertex model. (15~ 

Further, at least for N odd, these are also the equations that occur in 
the critical case (k = 0) of the general chiral Potts model, namely the 
Fateev-Zamolodchikov model. This case has been studied by Alber- 
tini--Eq. (23) of ref. 13--who also observes that the largest eigenvalue of 
the transfer matrix corresponds to the ej being grouped into strings of 
maximal length ( N - 1  for his case; r for the zero-temperature case we 
considered in Section 5). 

Once (6.23) has been solved for el,--., emp (and hence for v~ ..... Vmp), 
one still needs to calculate the functions G(Aq), G(Aq) (with differ only by 
a constant factor). To do this one uses (6.18) and (3.11) to express the 
functions "cj(tq) in terms of F(tq). Then we find that (6.17), for a//values of 
L becomes the single equation 

G(Aq) G(Aq ~) = ~  (6.24) 
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where 

N (t 2 _  
= co eb k~=o (tp - cOktq) L F(coktq) F(co ~+ ltq) (6.25) 

Plainly P is a rational function of tq. [For  the case when r, me = 0 it 
is proportional to the function P(z N) defined in (2.11) of ref. 6, with 
z = tp/tq.] In fact, from (6.24) and (6.12) it must reduce to a polynomial in 
N of degrre me, so it can be written as tq 

mE 

~ =  C 1~ ( w ~ - A q ) ( w k - A ]  ~) (6.26) 
k = l  

where C, Wl ..... WInE are some constants. Then (6.24) has the 2 mE solutions 

mE 

G(Aq), G(Aq) oc 1~ (Aq -w+-~)k (6.27) 
k = l  

where the mE signs can be chosen independently. 
These properties have been discussed by Tarasov(7); for N =  3 by 

McCoy et aL(5"8'9"14); and for the m e = 0  and N =  2 (Ising) cases by the 
author. (3'11) The superintegrable chiral Potts model seems top amalgamate 
features of the Ising model (notably the factorization of the eigenvalues of 
Tq into functions of Aq and functions of tq, and the independent choices of 
the Aq factors) with those of the six-vertex model (the Bethe-ansatz-type 
equations for the zeros of the tq function). 

The normalizations of G and G can be deduced from (6.24) (to within 
the usual arbitrariness of allowing the transformation Tq-~CTq, 
~q ~ e-li"q, which leaves the full two-row transfer matrix unchanged). 

The superintegrable model contains a Hermitian case, when tlq, pq, Vp, 
Vp, are real; Uq-2/2, Vq-2/2,  Up, Up, are pure imaginary; and t/p, t/p, are 
unimodular. This ensures that Wpq(n)* = ff/pq(-n) and Tq* = if'q, so all the 
eigenvalues of To Tq must be real. Considering this case, we can verify that 
the wk must then be real, for all allowed p, p'. This in turn implies (for the 
general superintegrable model) that the zero of ~ always lie on the 
negative real axis in the N u tq/tp plane. 

7. CONCLUSIONS 

We have extended the transfer matrix functional relations for the 
chiral Potts model to skewed boundary conditions. (An interesting feature 
is that they have the same set of solutions as before, but with different rules 
for determining which solutions to use.) 
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The zero-temperature calculation of Section 5 supports two conclu- 
sions. First, the vertical interracial tension, as defined in (5.26), is an 
analytic function of the vertical rapidities p and p' in a domain tl~iat spans 
both the superintegrable case (6.1) and the physical case (when the 
Boltzmann weights are positive real). Second, within this domain it is 
actually independent of p and p', in agreement with Z invarianceJ 38) 

In Section 6 we have specialized the functional relations to the super- 
integrable case, when simplifications occur. The next step, which we hope 
to perform, is to calculate the interfacial tension in this case, guided by the 
working of Section 5 when selecting the required maximum eigenvalues. 
From the Z-invariance argument, this should be independent of the 
remaining variable p: in fact, it should be the interfacial tension of the 
general physical chiral Potts model. 

A P P E N D I X  

A1 .  C a l c u l a t i o n  o f  Z2 and  (E 4 

To calculate Z2 in the zero-temperature limit, consider the Bethe 
ansatz equations (5.16), taking r = 2. If we set z m = e ikm, p = Z1Z2, then for 
j =  1, (5.16) gives 

2fiCOS2(zL+2+~O--Qp)--(p+fl2)(ZL+I+~ QZl) = 0  (A1) 

Also, taking the product of (5.6) over j =  1 and 2, we get 

pL = fO 2 Q  (A2) 

Suppose m and p are given. Then (At) has L + 2  solutions for zl. 
Summing over these solutions, we obtain 

(• '(, 
Z z{ = cos O<j<~L 

= L + 2 ,  j = 0  

__( p+fl2 ~ - j  
\ 2 ~ o s  2J ' - L < ~ j < O  (A3) 

Also, if we sum pk over all solutions of (A2), for all values 0,..., N -  1 of Q, 
we obtain 

~, p~ = NLak, o (A4) 

provided only that - NL < k < NL. 

822/73/3-4-3 
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Replacing j in (A3) by i - j ,  multiplying by y ,  summing over the 
values of p, and using (A4), at first sight we obtain the sum of i j 21Z 2 o v e r  

the solutions of (5.16). However, this spuriously includes solutions with 
zl = z2. There are NL of these, being the solutions of 

z ~ = - o )  Q, Q = 0  ..... N - 1  (A5) 

and for Iil, IjI<NL these give an unwanted contribution NL6i, j. 
Subtracting this off, the remainder overcounts the true sum by a factor of 
two, since for every solution for zl and z~ it includes an equivalent solution 
with z~ and z2 interchanged. Allowing for this, defining 

h = sin u/sin()~ - u), 7 = (2 cos 2) 1 (A6) 

and using (5.34), we obtain 

Z ZilZ~ = Z z~z~ = NL(L + 1)/2, i= j=  0 

=0,  0 > 0  (A7) 

(The restriction i - j  ~< L can probably be relaxed somewhat, but this result 
is sufficient for our purposes.) 

The result (A7) gives the sum of ziiz~ over all distinct allowed 
solutions of (5.16), i.e., over all eigenvalues of TqTq. Note that there are 
NL(L+ 1)/2 such eigenvalues, in  agreement with the dimension of the 
truncated r = 2 matrices--see the remarks before Eq. (5.19). 

From (2.11), Z2=~(Tqf'q) M, where the sum is over all the 
NL(L + 1)/2 eigenvalues. Using the binomial theorem to expand the RHS 
of (5.18) in powers of z~ and z2, we obtain 

z2 = e Z ( 2M 2M i,j \M- -  i / \ M - - j /  hi+J Z z'~z~ (AS) 

the i and j sums being from - M  to M. 
The summand is symmetric i n / a n d  j. Using this and (A7), we obtain, 

for 2M ~< L, 

NL~2" L ~ \ M - i /  Z 2 - ~  ~= 

o.2, / 2M \ /  2M \ / i  
+ 2 

which makes it clear that Z2 is real when 0 < u < 2. 
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We see that (for L sufficiently large), Z2 is indeed a polynomial in L 
of degree 2, and from (5.35) the leading (quadratic) terms in Z~/2Zo, in 
agreement with (5.27). 

The remaining terms are proportional to L. When M is large, they 
grow exponentially with M. Ignoring factors that grow (or decay) at less- 
than-exponential rates, the term preceding the double sum is proportional 
to ( 4 ~ ) 2 ~ a s  is the leading term in (A9). 

The terms in the double (i, j)  summation are all positive, and the sum 
is dominated by the maximum term, occurring when i = M f  and j = -Mg,  
where 

f (1  + f ) / { (1  - f ) ( f  +g)} = yh 

g(1 +g)/{(1 - g ) ( f +  g)} = y/h 
(AIO) 

For N >~ 3 and 0 < Uq < 1r/N, it appears that these equations have a unique 
solution for f,  g in the range 0 < f ,  g < 1. The corresponding term in 
the summand is (for M large) {16 / [ (1 - f2 ) (1 -g2 ) ] }  M. Hence the 
contribution of the double sum to Z2 is 

NL(4~)zM/[(1 _ f2)( 1 _ g2)] M (Al l )  

This dominates the contribution from the preceding term. Using (5.26), we 
deduce that the interracial tension g2 is given by 

(~2 - 2e,) /ku~ = ln[(1 - -  f 2 ) ( 1  _g2) ]  (A12) 

The RHS of this expression is plainly negative, so e2 < 2el. The RHS of the 
inequality (5.38) can be written as 

- ln{(1  + 7h))(1 + 7/h)/4} (A13) 

from which we can verify explicitly that it is satisfied by our result (A12). 

A2. C o m p a r i s o n  w i t h  Formulas  of  Sec t ion  5 

For r =  1 we have the two results (5.36) and (5.45)-(5.46). We can 
verify that they are equivalent by solving (5.45) for exp(2i;(o), and 
obtaining 

sec(z0 + 2/2): sec(zo - 2/2): sec(zo + u - 2/2) 

= 2 sin u:2 s in (2 -  u):sin 2 (A14) 

Using these ratios in (5.46), we get the earlier result (5.36). 



494 Baxter 

For  r = 2 we should compare Eqs. (A10)-(A12) with (5.45)-(5.46). We 
find that the f,  g herein are related to Z0 by 

2 sin u cos Zo 
l + f =  

sin 2 cos(z0 + u - 2) 

2 sin(2 -- u) cos(Zo -- 2) 
l - - f =  

sin 2 cos(zo + u -- 2) 

2 sin(2 - u) cos ;~o 

�9 l + g =  s in2cos()~ 0 + u )  

2 sin u cos(zo + 2) 
l - g =  

sin ,t cos()~o + u) 

f c o s ( Z o - 2 )  

g c o s ( z 0 + / ~ )  

(A15) 

(A16) 

Using these formulas in (A12) [together with (5.34)-(5.36)-1, we obtain the 
result (5.46). 
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